Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.

Identifieur interne : 002D90 ( Main/Exploration ); précédent : 002D89; suivant : 002D91

Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.

Auteurs : Tao Zhou [République populaire de Chine] ; Rui Zhang ; Dawei Yang ; Sandui Guo

Source :

RBID : pubmed:21225463

Descripteurs français

English descriptors

Abstract

The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.

DOI: 10.1007/s11033-010-0436-0
PubMed: 21225463


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.</title>
<author>
<name sortKey="Zhou, Tao" sort="Zhou, Tao" uniqKey="Zhou T" first="Tao" last="Zhou">Tao Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Rui" sort="Zhang, Rui" uniqKey="Zhang R" first="Rui" last="Zhang">Rui Zhang</name>
</author>
<author>
<name sortKey="Yang, Dawei" sort="Yang, Dawei" uniqKey="Yang D" first="Dawei" last="Yang">Dawei Yang</name>
</author>
<author>
<name sortKey="Guo, Sandui" sort="Guo, Sandui" uniqKey="Guo S" first="Sandui" last="Guo">Sandui Guo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21225463</idno>
<idno type="pmid">21225463</idno>
<idno type="doi">10.1007/s11033-010-0436-0</idno>
<idno type="wicri:Area/Main/Corpus">002F53</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F53</idno>
<idno type="wicri:Area/Main/Curation">002F53</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F53</idno>
<idno type="wicri:Area/Main/Exploration">002F53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.</title>
<author>
<name sortKey="Zhou, Tao" sort="Zhou, Tao" uniqKey="Zhou T" first="Tao" last="Zhou">Tao Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Rui" sort="Zhang, Rui" uniqKey="Zhang R" first="Rui" last="Zhang">Rui Zhang</name>
</author>
<author>
<name sortKey="Yang, Dawei" sort="Yang, Dawei" uniqKey="Yang D" first="Dawei" last="Yang">Dawei Yang</name>
</author>
<author>
<name sortKey="Guo, Sandui" sort="Guo, Sandui" uniqKey="Guo S" first="Sandui" last="Guo">Sandui Guo</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology reports</title>
<idno type="eISSN">1573-4978</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport (chemistry)</term>
<term>Adaptor Proteins, Vesicular Transport (genetics)</term>
<term>Adaptor Proteins, Vesicular Transport (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gossypium (anatomy & histology)</term>
<term>Gossypium (chemistry)</term>
<term>Gossypium (genetics)</term>
<term>Gossypium (growth & development)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Protein Subunits (chemistry)</term>
<term>Protein Subunits (classification)</term>
<term>Protein Subunits (genetics)</term>
<term>Protein Subunits (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gossypium (anatomie et histologie)</term>
<term>Gossypium (composition chimique)</term>
<term>Gossypium (croissance et développement)</term>
<term>Gossypium (génétique)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéines adaptatrices du transport vésiculaire (composition chimique)</term>
<term>Protéines adaptatrices du transport vésiculaire (génétique)</term>
<term>Protéines adaptatrices du transport vésiculaire (métabolisme)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sous-unités de protéines (classification)</term>
<term>Sous-unités de protéines (composition chimique)</term>
<term>Sous-unités de protéines (génétique)</term>
<term>Sous-unités de protéines (métabolisme)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport</term>
<term>Plant Proteins</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Plant Proteins</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport</term>
<term>Plant Proteins</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport</term>
<term>Plant Proteins</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Protéines végétales</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Gossypium</term>
<term>Protéines adaptatrices du transport vésiculaire</term>
<term>Protéines végétales</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Gossypium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gossypium</term>
<term>Protéines adaptatrices du transport vésiculaire</term>
<term>Protéines végétales</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines adaptatrices du transport vésiculaire</term>
<term>Protéines végétales</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21225463</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4978</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology reports</Title>
<ISOAbbreviation>Mol Biol Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.</ArticleTitle>
<Pagination>
<MedlinePgn>3309-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11033-010-0436-0</ELocationID>
<Abstract>
<AbstractText>The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Dawei</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Sandui</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mol Biol Rep</MedlineTA>
<NlmUniqueID>0403234</NlmUniqueID>
<ISSNLinking>0301-4851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033942">Adaptor Proteins, Vesicular Transport</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D033942" MajorTopicYN="N">Adaptor Proteins, Vesicular Transport</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003368" MajorTopicYN="N">Gossypium</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21225463</ArticleId>
<ArticleId IdType="doi">10.1007/s11033-010-0436-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Dec;38(6):1247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9869430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Sep 29;269(5232):1872-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2005 Apr;6(4):346-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2004 Apr;14(4):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15066634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2004;20:153-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Nov 15;223(1):7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:699-727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Struct Funct. 2003 Oct;28(5):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Apr;5(4):160-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10740297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 10;1744(3):415-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jul;9(7):1031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2000 Aug;12(4):467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jan;227(2):319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Sep 15;119(Pt 18):3719-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Oct;12(10):2907-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Guo, Sandui" sort="Guo, Sandui" uniqKey="Guo S" first="Sandui" last="Guo">Sandui Guo</name>
<name sortKey="Yang, Dawei" sort="Yang, Dawei" uniqKey="Yang D" first="Dawei" last="Yang">Dawei Yang</name>
<name sortKey="Zhang, Rui" sort="Zhang, Rui" uniqKey="Zhang R" first="Rui" last="Zhang">Rui Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhou, Tao" sort="Zhou, Tao" uniqKey="Zhou T" first="Tao" last="Zhou">Tao Zhou</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21225463
   |texte=   Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21225463" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020